Enhanced Oil Recovery
North Sea Case Studies
ANP Seminar: Topic 2, 23rd March 2017
Gerry Coghlan (Ingen-Ideas, an Amec Foster Wheeler company)
Framework

- ‘North Sea’ is a catch-all label covering North Sea, West of Shetland and Norwegian Sea
- EOR projects reviewed were either on UK Continental Shelf, UKCS, or on Norwegian Continental Shelf, NCS
- Both producing regions are considered mature, but also have areas in which significant new developments are occurring:
 - for UKCS - West of Shetland
 - for NCS - Norwegian Sea
- UKCS oilfields are predominantly sandstones
- NCS fields are mostly sandstones but a significant chalk play exists
Orientation

- Water depth ca. 100-400m, deepens as move North
- Initial large fields developed with fixed platforms
- FPSO more common in deeper water and away from reduced shelter
North Sea - Potted History

- **Geological ages** of developed oil reservoirs, in declining order of historic recovery, were
 - For UKCS: Jurassic, Tertiary, Cretaceous
 - For NCS, Jurassic, Cretaceous (chalk) and Tertiary

- **Waterflooding** has featured in the majority of oil field developments

- Initial, large field developments typically preceded gas evacuation

- **Gas injection** (GI) adopted as
 - Large volumes of gas
 - structural relief
 - rock quality
 - a need to replace reservoir voidage (production)

- Oilfields that used GI include **Brent, Beryl, Fulmar** (all UKCS) and **Ekofisk, Statfjord, Gullfaks, Oseberg, Snorre** (all NCS)
North Sea - Gas Market Effect

- Since early 1990’s GI has not featured in initial field developments in UKCS
 - UK switched to natural gas for power generation and domestic consumption and associated gas was increasingly diverted there
 - UK is gas deficient and imports over 50% of its requirements

- NCS saw more gradual build-out of pipeline and market
 - Norway internal markets are small and dispersed, fully supplied by hydroelectric

- For NCS, GI continues to feature in some new field developments dependent on gas export options, area gas sales agreements etc.
 - Potential for CO₂ as part of Carbon Capture and Storage (CCS)
North Sea - Recovery Factor Snapshot

- Both UKCS and NCS oilfields have enjoyed very high recovery factors

- High cost environment with limited, high-cost wells meant focus on:
 - Reservoir characterisation (3D seismic then 4D, geological modelling)
 - Reservoir management strategies
 - Well construction (extended reach drilling, smart wells, flow assurance)

- Favourable geology, light oil translated into good waterflood recovery and, where used, from gasflood

- Estimated ultimate recovery for UKCS and NCS oilfields 46%
UKCS and NCS EOR

North Sea EOR Projects, Total 27

- HCGI: 55%
- WAG: 26%
- MEOR: 11%
- Polymer: 4%
- LWSF: 4%

North Sea EOR by Country

- Norway: 55%
- UK: 41%
- Denmark: 4%
North Sea - WAG Schemes

- **Water Alternating Gas (WAG)** is a hybrid scheme that combines water and gas flooding

- **Features**
 - A compartment/fault-block is injected with water for a set volume typically then the injector is switched to gas injection for a set volume
 - Sequence performed multiple times to maximise incremental oil
 - Limits gas cost burden but changeover adds operational complexity
 - Preceded by core floods to establish incremental recovery target and detailed reservoir modelling to scale up lab results (or field pilots)

- **Applied successfully** in several North Sea fields - cycles ca. 6-12 months

- **Currently by**
 - BP - Magnus (UKCS) and Ula (NCS)
 - Statoil - Gullfaks, OsebergE, Snorre, Veslefrikk; W’shall - Brage
Magnus Field Production Plot

- Built on learning from Miller (plus non-op’d Brae S.)
- Imports associated gas from West of Shetland
- Increased contribution from WAG as more fault blocks added
- Long payback often a feature of EOR
Ula Field Production Plot

- Built on Miller and Magnus experience
- Imports associated gas from nearby fields
- Increased contribution as WAG widened
North Sea - Polymer Assisted Water Flooding

- Recovery by water flooding impacted by viscosity difference with oil
 - For typical light N.Sea oil, >30°API, 1-10cP contrast not significant
 - Where oil heavier and more viscous, making injection water (<1cP) more viscous introducing polymers may improve recovery vs seawater
- UKCS pilot scheme by **Chevron in Captain** (ca.100cP oil), NCS pilot by **Statoil in Heidrun**, long running Total project in Dalia, offshore Angola:
 - Identifying best polymer, temperature and salinity constraints
 - Logistics and supply chain getting chemical to offshore wellsites
 - Onsite QC ensuring intended quality is injected in reservoir
Polymer Assisted Water Flooding (continued)

- Results encouraged incorporation of facilities for polymer flooding in asset development planning
 - **Captain** late life development planning
 - Redevelopment planning for BP’s **Schiehallion field**, West of Shetland
 - Final FID pending for both

- EOR favours companies with
 - ‘long time perspective’ as offshore EOR project risk mitigation reflected in v.long time frames
 - R&D resources
 - ability to move opportunities out of the laboratory and into field
 - access to cheaper, proving grounds
 - Collaborative approaches to shared risk mitigation e.g. for polymer BP+Statoil partners in Dalia
Emerging EOR Methods

- **Emerging EOR methods**
 - Microbial EOR (MEOR)
 - Low Salinity Water Flooding, LSWF

- Both reduce residual oil saturation in rock
 - In MEOR bacteria is introduced and nourished in reservoir to effect a reduction in surface tension and reduce oil trapping in pores
 - Science behind low salinity effect is still under debate

- ‘Cheap’ proving grounds have been important
 - Statoil - ongoing MEOR trial in Norne, NCS, but have collaborated on N.American field trials with Glori Energy (early Gullfaks pilot too)
 - BP - forefront of evaluation of Low Salinity WF, have progressed the technique through a progression of field trials initially onshore Alaska

- LSWF/ LoSal® has been adopted for field-wide deployment in the next development phase of Clair, West of Shetland, under construction (BP)
Offshore EOR

Challenges:
- Remoteness, weather, sea-state
- Space and weight limitations
- Expensive wells, wide well spacing
- Reservoir understanding
- Seawater main resource
- Flow assurance
- Mature field: old wells, commingled
- Pilot testing
- Access to experienced specialists

Resourcing:
- Integrated team incl.wells, facilities from outset for early ID of issues
- Location/ nature of unswept oil coupled with geology
- Supplementary core analysis to confirm EOR opportunity
- Additional PVT analysis
- Flow assurance provision
- Monitoring and surveillance plan
- People: continuity, long term
Offshore EOR Incremental Recovery

- **Reporting sporadic**, estimates not always consistent/ comparable
 - N.Sea regional average RF 46% but range is wide ca.20%-70%
 - Similarly incremental RF from EOR has range ca.2%-15%

- **Localised EOR dilutes incremental field recovery** e.g. if EOR adds 10%
 RF from a 200MMstb fault block of a 1000MMstb field, field RF +2%

- Field specifics incl. development history impact EOR increment also size of
 field, nature of reservoir (sandstone/ carbonate), temperature

- **EOR understanding, practises steadily evolving** – collaboration and
 information dissemination/sharing important

- **UKCS review identifies GI (incl.CO₂), WAG, polymer EOR and LSWF**
 as most applicable
Questions?

G. Coghlan, Ingen-Ideas
an AMEC FW company